Increase Efficiency of Photovoltaic Pumping System Based BLDC Motor Using Fuzzy Logic MPPT Control

نویسندگان

  • Mehdi Ouada
  • M Saad Saoud
چکیده

The aim of this paper is presentation of an approach for modeling , control and optimization of a photovoltaic pumping system which contains a PV generator , DC-DC boost converter, MPPT controller, DC-AC inverter and a BLDC motor. We use an intelligent control method for searching the maximum power point (MPP). This method uses a fuzzy logic controller applied to a drive a DC–DC converter to an optimal operating point using PV panel’s measured variables. The PWM signals are generated by the interaction of the motor speed closed-loop system and the current hysteresis. The motor reference current is compared with the motor speed feedback signal. The considered model has been implemented in Matlab /simulink environment. The results show the effectiveness of the proposed method under variation irradiation ,in order to increase the performance of the water pumping system. Key-Words: Pumping system, photovoltaic, MPPT, BLDC, Fuzzy logic, Optimization

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A PSO-based Optimization of a fuzzy-based MPPT controller for a photovoltaic pumping system used for irrigation of greenhouses

The main asset of this paper is among the uses of fuzzy logic in the engineering sector and especially in the renewable energies as a large alternate of fossil energies, in this paper a PSO-based optimization is used to find the optimal scaling parameters, of a fuzzy logic-based MPPT controller, that maximize the efficiency of a photovoltaic pumping system. The tuning of input and output parame...

متن کامل

Design of Maximum Power Point Tracking in Solar Array Systems Using Fuzzy Controllers

In recent year's renewable energy sources have become a useful alternative for the power generation. The power of photovoltaic is nonlinear function of its voltage and current. It is necessary to maintain the operation point of photovoltaic in order to get the maximum power point (MPP) in various solar intensity. Fuzzy logic controller has advantage in handling non-linear system. Maximum power ...

متن کامل

Modeling of Solar Power Based Quasi-Z-Source Inverter to Supply BLDC Motor

In the present world, conventional sources of energy are depleting at a faster rate because of its increased consumption. Renewable sources of energy are the better alternatives for this problem and among this solar energy is the best solution. Among the various PV (photovoltaic) applications, water pumping system using solar energy is growing in interest in isolated areas, where grid availabil...

متن کامل

Improving the Control Strategy of a Standalone PV Pumping System by Fuzzy Logic Technique

This work aims to develop an accurate model of an existing Photovoltaic Pumping System (PvPS) which is composed of an Ebara Pra-0.50T Asynchronous Moto-Pump (AMP) fed by Kaneka GSA-60 photovoltaic panels via a Moeller DV-51 speed drive. The developed model is then used to compare the performance of the system with its original control strategy based on classical indirect vector control strategy...

متن کامل

A New Implementation of Maximum Power Point Tracking Based on Fuzzy Logic Algorithm for Solar Photovoltaic System

In this paper, we present a modeling and implementation of new control schemes for an isolated photovoltaic (PV) using a fuzzy logic controller (FLC). The PV system is connected to a load through a DC-DC boost converter. The FLC controller provides the appropriate duty cycle (D) to the DC-DC converter for the PV system to generate maximum power. Using FLC controller block in MATLABTM/Simulink e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013